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Abstract

The ANOVA method is of value to detect if a population, consisting of labelled sub-populations, has
any statistically significant support for considering such labels as valid. In classical ANOVA, the effect
of a variable in each sub-population is treated as a Conditional Expectation (CE), and the variance of
such CE among the sub-populations has a bearing on whether the null hypothesis can be rejected or not.
ANOVA formulae can therefore be used to estimate the Variance of CE (Var-of-CE) itself, and a fairly recent
publication has proposed a method wherein a fixed number of samples in each sub-population is used to
estimate Var-of-CE. This method assumes repeated sampling of both sub-populations and samples within
them, and have designed provably unbiased estimators of Var-of-CE, with one of these being approximately
minimum variance under some conditions. Combined with another more recent method, such methods have
disadvantages, such as requiring a pilot simulation, or suffering an empirically-observed Root Mean Squared
Error (RMSE) that is unfavourable. The work explained here proposes an ANOVA estimator for Var-of-CE
that requires an increasing number of samples from each subpopulation. Yet, the estimator reduces the
empirically-observed MSE in Var-of-CE estimate in 3 benchmark experiments from the literature.

I. Introduction
The Analysis of Variance (ANOVA) technique is used extensively in statistical methods to understand

whether effect τk of an alternate hypothesis has a dominating impact on error ϵk,j , which is the noise in
observation j that belong to a sub-population k. The samples drawn are Xk,j where each Xk,j = µ+τk+ϵk,j , in
which µ is expectation of Xk,j over all effects k (representing the outer loop of the simulation) and inner loop
samples j. In particular, µ = limK→∞,n→∞

1
nK

∑K
k=1

∑n
j=1Xk,j . Note that we have assumed n corresponding

to an outer loop iteration k to be fixed, but in general it can be an integer nk dependant on k. Thus K
sub-populations are considered in the outer loop of the simulation, while within each sub-population k, nk

samples are considered in the inner loop.
The standard formulas used in ANOVA to estimate Var-of-CE, the quantity below with notation σ̂2

τ , are
written as follows:

SSϵ =

K∑
k=1

nk∑
j=1

(Xk,j − X̄k)
2 where X̄k :=

1

nk

nk∑
j=1

Xk,j

SSτ =

K∑
k=1

nk · (X̄k − ¯̄X)
2
, where ¯̄X :=

1

C

K∑
k=1

nk · X̄k, and C :=

K∑
k=1

nk

σ̂2
ϵ =

SSϵ

C −K
(1)

σ̂2
τ =

SSτ − (K − 1) · σ̂2
ϵ

C −
∑K

k=1 n
2
k

C

(2)

We have used the notation in [1, (6)-(8)], where a simple derivation of the above formulas is also given.
We consider situations where K → ∞. Note that classical single-factor ANOVA considers finite K and

F =
( SSτ

K−1)
σ̂2
ϵ

is used as the F−statistic with (K − 1, C −K) degrees of freedom. If this F ≥ Fα, where α is a



statistical signficance level that depends on degrees of freedom, then the null hypothesis is rejected. Note the
requirement that it is sufficient for an unbiased estimator that 1. K → ∞ as C → ∞ - so that estimator σ̂2

τ

has lower variance - and 2. as K → ∞ (therefore k → ∞ also), we require nk → ∞ to result in lower bias.
This implies that a static sampling budget C, which assures nearly unbiased and minimal-variance behaviour,
could be such that K >> 0 and nk = N >> 0. We utilise this scheme to structure K, {nk}Kk=1 to satisfy the
above conditions such that 1.

∑K
k=1 nk <= C while

∑K+1
k=1 nk <= C, and 2. nk = kα, α > 0, respectively.

The value of α will be further filtered to also satisfy the conditions of two-timescale stochastic approximation.

A. Survey of Literature
Recent work [1] has proposed a one-and-half level nested simulation where a pilot experiment, costing

about 20% of sampling budget C, calculates an approximation to the optimal n∗, with nk = n∗ for all k.
Here n∗ is inner loop size that results in a minimum-variance Var-of-CE estimator σ̂2

M , under the conditions
that i. nk = n, i.e. nk is a fixed integer n for all k ≤ K, such that ii. number of subpopulations K → ∞.
More recently, [2], proposed an easier estimator that required only a one level simulation such that nk = 2,
∀k ≤ K. The advantage with the algorithm in [2] is that it doesn’t require a pilot simulation unlike [1]. After
establishing that the algorithm is unbiased, [2] test their work on 3 experiments where closed-form value of
σ2
τ is known and thus a diminishing root mean square error (RMSE) is observed against sampling budget

C. In contrast, [1] use a Delta Hedging example from finance where variance of estimator σ̂2
τ in different

experiments is recorded, to indicate a low variance when nk = n∗, and higher variances when nk = n ̸= n∗,
for different C. Notice that RMSE in [1, (10)] is O( 1√

C
) asymptotically despite nk = n∗, i.e. samples drawn

from sub-populations k being bounded in number. Notice also that this claim holds true for ANOVA-based
Var-of-CE estimator (1)-(2) above.

Note that rate of convergence being O( 1√
C
) would also depend on the method of apportioning K and nk.

For example, one such scheme could be K =
√
C, while nk = n, with n =

√
C. Such a scheme of apportioning,

since nk = n, ∀k, would nevertheless have the desirable property of RMSE converging at rate O( 1√
C
). Also

note in this scheme that as C → ∞, we have K → ∞ and n → ∞, for better properties of the ANOVA
Var-of-CE estimator. However, since nk, ∀k, must be calculated upfront, the sampling budget C must also
be declared apriori and is therefore not sequential in nature. Separately, experimental performance indicates
O( 1√

C
) or better RMSE convergence for ANOVA and 2TS-ANOVA, since these have a lower RMSE than the

estimator in [2], as seen below in the results section.

II. Proposed Algorithm: 2TS-ANOVA
The proposed algorithm in this work is to calculate an additional term ˜̄Xk which is a critic, updated over

nk samples, for an imaginary actor recursion. The actor role is also played by ˜̄Xk, with the constraint that its
value is evaluated only at the k−th outer loop instance. The requirement in 2TS algorithms is that changes
in actor parameter converge to 0 as k → ∞, note that ˜̄Xk → ¯̄X as k → ∞ irrespective of any structure
on nk. Therefore the claim is that ˜̄Xk converges to ¯̄X at the rate 1

k and a critic recursion may be designed
around this. This critic recursion would also be the calculation of ˜̄Xk, however at a more granular number
of samples, Nk =

∑k
s=1 ns, with ns suitably chosen.

The principles of two-timescale actor-critic stochastic approximation algorithms were first proposed in [3].
Note that in [3], it is required to have separating updating stepsizes for both actor and critic algorithms.
The specific variant of two-timescale algorithm used here is referred to as a Type-1 algorithm described in
[4]. To give an illustration of what an updating stepsize is, assume that nk = n, ∀k, and note the recursion
¯̄Xk := ¯̄Xk−1 +

1
k · (X̄k − ¯̄Xk−1) for ¯̄Xk → ¯̄X used above. In this illustration, 1

k is the updating stepsize and
also suits the context where ¯̄X is calculated as an average of X̄k.
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The formulas used in 2TS-ANOVA are proposed as follows:

S̃Sϵ =

K∑
k=1

nk∑
j=1

(Xk,j − ˜̄Xk)
2
, where ˜̄Xk :=

1

Nk

k∑
m=1

nm · X̄m, and Nk :=

k∑
m=1

nm

S̃Sτ =

K∑
k=1

nk · (X̄k − ˜̄Xk)
2

(
σ̂2
τ

σ̂2
ϵ

)
=

∑K
k=1 nk ·

∑k−1
m=1 n

2
m+(Nk−nk)2

N2
k

∑K
k=1 (1−

nk

Nk
)2 + nk·Nk−1

N2
k∑K

k=1 nk ·
∑k−1

m=1 n
2
m+(Nk−nk)2

N2
k

∑K
k=1 nk · Nk(Nk−1)

N2
k

.

−1

·
(
S̃Sτ

S̃Sϵ

)
The method of calculating coefficients is similar to the treatment in [1, (6)-(8)].
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We denote these calculations below:

S̃Sϵ =

K∑
k=1

nk∑
j=1

(Xk,j −
1

Nk

Nk∑
s=1

Xs1,s2)

2

,

=

K∑
k=1

nk∑
j=1

(µ+ τk + ϵk,j −
1

Nk

Nk∑
s=1

(µ+ τs1 + ϵs1,s2))

2

,

=

K∑
k=1

nk∑
j=1

(τk + ϵk,j −
1

Nk

Nk∑
s=1

(τs1 + ϵs1,s2))

2

,

=

K∑
k=1

nk∑
j=1

(τk −
1

Nk

k∑
s=1

nsτs + ϵk,j −
1

Nk

Nk∑
s=1

ϵs1,s2)

2

,

E(S̃Sϵ) =

K∑
k=1

nk∑
j=1

E(τk −
1

Nk

k∑
s=1

nsτs)

2

+ E(ϵk,j −
1

Nk

Nk∑
s=1

ϵs1,s2)

2

=

K∑
k=1

nk∑
j=1

((1− nk

Nk
)τk −

1

Nk

k−1∑
s=1

nsτs)

2

+ ((1− 1

Nk
)ϵk,j −

1

Nk

Nk∑
s=1,(s1,s2 )̸=(k,j)

ϵs1,s2)

2

=

K∑
k=1

nk∑
j=1

((1− nk

Nk
)
2
− 1

N2
k

k−1∑
s=1

n2
s)σ

2
M + ((1− 1

Nk
)
2

+
1

N2
k

(Nk − 1))σ2
ϵ

=

K∑
k=1

nk∑
j=1

∑k−1
s=1 n

2
s + (Nk − nk)

2

N2
k

σ2
M +

K∑
k=1

nk∑
j=1

(Nk − 1)2 + (Nk − 1)

N2
k

σ2
ϵ

=

K∑
k=1

nk

∑k−1
s=1 n

2
s + (Nk − nk)

2

N2
k

σ2
M +

K∑
k=1

nk
Nk(Nk − 1)

N2
k

σ2
ϵ

S̃Sτ =

K∑
k=1

nk(X̄k − ˜̄Xk)
2
,

=

K∑
k=1

nk(
1

nk

nk∑
j=1

Xk,j −
1

Nk

Nk∑
j=1

Xj1,j2)

2

,

E(S̃Sτ ) =

K∑
k=1

nk · E((τk −
1

Nk

k∑
j=1

njτj) + (ϵ̄k −
1

Nk

k∑
j=1

nj ϵ̄j))

2

,

=

K∑
k=1

nk ·

((1− nk

Nk
)
2
+

1

N2
k

k−1∑
j=1

n2
j ) · σ2

M + ((1− nk

Nk
)
2 1

nk
+

1

N2
k

k−1∑
j=1

nj) · σ2
ϵ

 ,

=

K∑
k=1

nk · ((1−
nk

Nk
)
2
+

1

N2
k

k−1∑
j=1

n2
j ) · σ2

M +

K∑
k=1

nk · ((1−
nk

Nk
)
2 1

nk
+

1

N2
k

k−1∑
j=1

nj) · σ2
ϵ ,

=

K∑
k=1

nk ·
((Nk − nk)

2 +
∑k−1

j=1 n
2
j )

N2
k

· σ2
M +

K∑
k=1

((1− nk

Nk
)
2
+

nk ·Nk−1

N2
k

) · σ2
ϵ .

The method of calculating coefficients is similar to the treatment in [1, (6)-(8)].

III. Results
Consider Experiment 3 of [2] as the first example, and nk = ⌈k0.51⌉, where 0.51 is used such that nk → ∞

as k → ∞ (a requirement in [3]). The outcome in Experiments 1-2 of [2] also indicate advantage for the
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2TS-ANOVA algorithm, with performance of algorithm in [2] in Experiment 3 also plotted for reference below.
The second graph below is to compare the variance of ANOVA and ANOVA-2TS in the Delta Hedging setting
of [1]. The measured variance is equivalent for lower sampling budgets - with a slight edge for ANOVA-2TS
- but becomes indistinguishable later.

We describe the 3 experiments from [2] as follows: in the first experiment, a random variable Yk is sampled
from the distribution β(4, 4), then samples {Xk,j}nk

j=1 are sampled from N(Yk,
√
0.5). Note that for the

method of [2], nk = 2, ∀k. For the second experiment, Yk is sampled as in the first experiment, but samples
{Xk,j}nk

j=1 are drawn from N(Yk, Yk). In the third example, the inner-loop samples {Xk,j}nk

j=1 are drawn from
exponential distribution as EXP( 1

Yk+1). Experimental results of all 3 experiments are included here, over
10000 simulations each, and are compared with [2] algorithm.

Fig. 1. Performance of ANOVA Vs 2TS-ANOVA in Example 3 of [2] and [1]

Fig. 2. Performance of ANOVA Vs 2TS-ANOVA in Examples 1 and 2 of [2]
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