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Abstract

The ANOVA method is of value to detect if a population, consisting of labelled sub-populations, has
any statistically significant support for considering such labels as valid. In classical ANOVA, the effect
of a variable in each sub-population is treated as a Conditional Expectation (CE), and the variance of
such CE among the sub-populations has a bearing on whether the null hypothesis can be rejected or not.
ANOVA formulae can therefore be used to estimate the Variance of CE (Var-of-CE) itself, and a fairly recent
publication has proposed a method wherein a fixed number of samples in each sub-population is used to
estimate Var-of-CE. This method assumes repeated sampling of both sub-populations and samples within
them, and have designed provably unbiased estimators of Var-of-CE, with one of these being approximately
minimum variance under some conditions. Combined with another more recent method, such methods have
disadvantages, such as requiring a pilot simulation, or suffering an empirically-observed Root Mean Squared
Error (RMSE) that is unfavourable. The work explained here proposes an ANOVA estimator for Var-of-CE
that requires an increasing number of samples from each subpopulation. Yet, the estimator reduces the
empirically-observed MSE in Var-of-CE estimate in 3 benchmark experiments from the literature.

I. Introduction

The Analysis of Variance (ANOVA) technique is used extensively in statistical methods to understand
whether effect 7, of an alternate hypothesis has a dominating impact on error € j, which is the noise in
observation j that belong to a sub-population k. The samples drawn are X}, ; where each X}, ; = p+7+€g 5, in
which g is expectation of Xy, ; over all effects k (representing the outer loop of the simulation) and inner loop
samples j. In particular, 4 = limg 00 n—y00 # Zszl Z?Zl X} ;- Note that we have assumed n corresponding
to an outer loop iteration k to be fixed, but in general it can be an integer n; dependant on k. Thus K
sub-populations are considered in the outer loop of the simulation, while within each sub-population k, ng
samples are considered in the inner loop.

The standard formulas used in ANOVA to estimate Var-of-CE, the quantity below with notation 62, are
written as follows:
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We have used the notation in [1, (6)-(8)], where a simple derivation of the above formulas is also given.
We( consider situations where K — oco. Note that classical single-factor ANOVA considers finite K and
SSy
F =

1) is used as the F'—statistic with (K —1,C — K) degrees of freedom. If this F' > F,, where « is a
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statistical signficance level that depends on degrees of freedom, then the null hypothesis is rejected. Note the
requirement that it is sufficient for an unbiased estimator that 1. K — co as C — oo - so that estimator 62
has lower variance - and 2. as K — oo (therefore k — oo also), we require ny — oo to result in lower bias.
This implies that a static sampling budget C, which assures nearly unbiased and minimal-variance behaviour,
could be such that K >> 0 and nk = N >> 0. We utilise this scheme to structure K, {nk}le to satisfy the
above conditions such that 1. Ek 1 <= C while K+11 ng <= C, and 2. np = k%, a > 0, respectively.
The value of a will be further filtered to also satisfy the conditions of two-timescale stochastic approximation.

A. Survey of Literature

Recent work [1] has proposed a one-and-half level nested simulation where a pilot experiment, costing
about 20% of sampling budget C, calculates an approximation to the optimal n*, with ng = n* for all k.
Here n* is inner loop size that results in a minimum-variance Var-of-CE estimator 6’%/[7 under the conditions
that i. np = n, i.e. ng is a fixed integer n for all k¥ < K, such that ii. number of subpopulations K — oc.
More recently, [2], proposed an easier estimator that required only a one level simulation such that nj = 2,
VEk < K. The advantage with the algorithm in [2] is that it doesn’t require a pilot simulation unlike [1]. After
establishing that the algorithm is unbiased, [2] test their work on 3 experiments where closed-form value of

02 is known and thus a diminishing root mean square error (RMSE) is observed against sampling budget

C. In contrast, [1] use a Delta Hedging example from finance where variance of estimator 62 in different
experiments is recorded, to indicate a low variance when ny = n*, and higher variances when ny = n # n*,
for different C. Notice that RMSE in [1, (10)] is O(\%) asymptotically despite ny = n*, i.e. samples drawn
from sub-populations k being bounded in number. Notice also that this claim holds true for ANOVA-based
Var-of-CE estimator (1)-(2) above.

Note that rate of convergence being O(%) would also depend on the method of apportioning K and ng.

For example, one such scheme could be K = +/C, while nj, = n, with n = v/C. Such a scheme of apportioning,
since ny = n, Vk, would nevertheless have the desirable property of RMSE converging at rate O( \F) Also
note in this scheme that as C' — oo, we have K — oo and n — oo, for better properties of the ANOVA
Var-of-CE estimator. However, since ng, Yk, must be calculated upfront, the sampling budget C must also
be declared apriori and is therefore not sequential in nature. Separately, experimental performance indicates

O(\%C) or better RMSE convergence for ANOVA and 2TS-ANOVA, since these have a lower RMSE than the
estimator in [2], as seen below in the results section.

II. Proposed Algorithm: 2TS-ANOVA

The proposed algorithm in this work is to calculate an additional term X, which is a critic, updated over
ny, samples, for an imaginary actor recursion. The actor role is also played by X}, with the constraint that its
value is evaluated only at the k—th outer loop instance. The requirement in 2TS algorithms is that changes
in actor parameter converge to 0 as £ — 0o, note that X, — X as k — oo irrespective of any structure
on ng. Therefore the claim is that Xk converges to X at the rate Rand a critic recursion may be designed
around this. This critic recursion would also be the calculation of X}, however at a more granular number
of samples, Nj, = Zl;:l ng, with ng suitably chosen.

The principles of two-timescale actor-critic stochastic approximation algorithms were first proposed in [3].
Note that in [3], it is required to have separating updating stepsizes for both actor and critic algorithms.
The specific variant of two-timescale algorithm used here is referred to as a Type-1 algorithm described in
[4] To give an 1llustrat10n of what an updating stepsize is, assume that nj = n Vk, and note the recursion
X = X1+ k; (Xk — X 1) for X — X used above. In this illustration, + is the updating stepsize and
also suits the context where X is calculated as an average of X.



The formulas used in 2TS-ANOVA are proposed as follows:
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The method of calculating coefficients is similar to the treatment in [1, (6)-(8)].



We denote these calculations below:
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The method of calculating coefficients is similar to the treatment in [1, (6)-(8)].

III. Results

Consider Experiment 3 of [2] as the first example, and nj, = [k?-%!], where 0.51 is used such that nj — oo
as k — oo (a requirement in [3]). The outcome in Experiments 1-2 of [2] also indicate advantage for the
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2TS-ANOVA algorithm, with performance of algorithm in [2] in Experiment 3 also plotted for reference below.
The second graph below is to compare the variance of ANOVA and ANOVA-2TS in the Delta Hedging setting
of [1]. The measured variance is equivalent for lower sampling budgets - with a slight edge for ANOVA-2TS
- but becomes indistinguishable later.

We describe the 3 experiments from [2] as follows: in the first experiment, a random variable Y}, is sampled
from the distribution $(4,4), then samples {Xj ;}7%, are sampled from N (Y%,+/0.5). Note that for the
method of [2], ny = 2, Vk. For the second experiment, Y is sampled as in the first experiment, but samples
{Xk,j}7L, are drawn from N (Y, Yy). In the third example, the inner-loop samples {Xj ;}7%, are drawn from
exponential distribution as EXP(ﬁ) Experimental results of all 3 experiments are included here, over
10000 simulations each, and are compared with [2] algorithm.

Goda Example 3: ANOVA-2TS Vs ANOVA, 10000 experiments
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Fig. 1. Performance of ANOVA Vs 2TS-ANOVA in Example 3 of [2] and [1]

Goda Example 1: ANOVA-2TS Vs ANOVA, 10000 experiments

Goda Example 2: ANOVA-2TS Vs ANOVA, 10000 experiments
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Fig. 2. Performance of ANOVA Vs 2TS-ANOVA in Examples 1 and 2 of [2]
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